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SUMMARY

Fringe element reconstruction technique for tracking the free surface in three-dimensional incompressible
�ow analysis was developed. The �ow �eld was calculated by the mixed formulation based on a four-
node tetrahedral element with a bubble function at the centroid (P1+/P1). Since an Eulerian approach
was employed in this study, the �ow front interface was advected by the �ow through a �xed mesh.
For accurate modelling of interfacial movement, a fringe element reconstruction method developed
can provide not only an accurate treatment of material discontinuity but also surface tension across
the interface. The e�ect of surface tension was modelled by imposing tensile stress directly on the
constructed surface elements at the �ow front interface. To verify the numerical approach developed,
the developed algorithm was applied to two examples whose solutions are available in references.
Good agreement was obtained between the simulation results and these solutions. Copyright ? 2005
John Wiley & Sons, Ltd.

KEY WORDS: three-dimensional �ow; free surface; front tracking; �nite element method; fringe
element reconstruction

INTRODUCTION

Free surface �ows and interfaces between two immiscible �uids or materials with di�erent
phases are observed in many natural and industrial processes. Especially at the �lling stages
of mould �ow, the accurate prediction of �ow with moving free surface is very impor-
tant. Various researches were carried out to simulate these �ows. Hughes et al. [1] solved
the Navier–Stokes equations using the penalty function formulation. Bathe et al. [2] have
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developed the ADINA-F �nite element programme for �uid �ow analysis with free surfaces
and structural interactions.
The �ow simulations with free surfaces can be based on either a moving mesh or a �xed

mesh strategy. In the �rst case, called the Lagrangian method, only the �uid domain is
meshed and the location of the �uid front is represented by a set of deformed meshes. In
the second one, called the Eulerian method, the mesh is �xed and the free surface moves
through it. Although the �rst strategy seems quite natural since the boundary of the �uid
domain can be well known, it is limited by the mesh distortion and the contact treatment. The
Lagrangian method can be improved by using an arbitrary Lagrangian–Eulerian method [3–7].
However, in complex three-dimensional �ow, it is very di�cult to determine how to move the
boundary meshes. Therefore, the Eulerian method was adopted for numerical simulations in
this study. In this approach, the numerical technique must be coupled with a technique to
track the advecting �uid boundaries and interfaces.
Front-tracking techniques are divided into two groups: surface- and volume-tracking meth-

ods. In the surface-tracking methods, markers are initially located on the interface and are
subsequently followed within the �ow. These techniques give an accurate description of the
free surface. However, interfacial mechanisms such as coalescence cannot be easily treated
with these techniques. Moreover, for large and complex motion, the marker points will be
non-uniformly distributed causing numerical instability as the interface evolves.
In the volume-tracking methods, the interface is implicitly tracked. Here, knowing the initial

interface location and the velocity �eld, the surface is advected using the volume fraction �eld
and reconstructed based on the newly calculated volume fractions. The interface is located
somewhere in partially �lled cells. The two commonly used methods are the volume of
�uid (VOF) [8–15] and pseudo-concentration methods [16–19]. The VOF technique de�nes
a marker function F , which represents the fraction of a cell volume occupied by one of
the �uids. For a given cell, if F is zero or unity, the cell is considered to be either empty
or �lled with the �uid, respectively. If F is a value between zero and unity, the cell is
an interface cell. The pseudo-concentration method is an extension of the volume tracking
approach based on a marker function to �nite element unstructured meshes. In this technique,
a marker function, named pseudo-concentration, was designed to be advected by a standard
�nite element computation. The main feature of this function is that it is continuous on the
whole domain and therefore can be accurately represented by �nite element interpolation.
The advantage of these volume tracking methods is that they can handle the most complex

free surface �ow problems. Surface breaking and merging can be treated with this technique.
However, these techniques have a major shortcoming. Although the interface itself can be
located inside a cell, the governing equations for the �eld variables are applied for the whole
cell. This results in signi�cant inaccuracies in the treatment of the interface viscous stresses
and the surface tension forces. To overcome these shortcomings, mesh �tting by dividing
those cells crossed by the �ow front interface into several cells was developed. This approach
has been used by Sato and Richardson [20] and Mashayek and Ashgriz [21] for structured
�nite volume meshes and by Lock et al. [22] for fully unstructured triangular �nite element
meshes. However, all the proposed techniques are limited to two-dimensional cases so far.
In the present study, the fringe element reconstruction method for general tetrahedral �nite
element mesh was developed. Here, the �ow front was advected in a Lagrangian way, and
new elements were constructed as a part of the original mesh where the �uid exists. There-
fore, this method is able to accurately describe material discontinuity across the interface for
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three-dimensional �ow and can also take into account an interfacial phenomenon such as
surface tension.

GOVERNING EQUATIONS

In this study, a mixed formulation of the governing �ow equations was used to compute the
�ow �eld. The momentum and mass conservations of a Newtonian �uid �ow are described
by the Navier–Stokes equations:

�
(
@vi
@t
+ vi; jvj

)
= {−p�ij + �(vi; j + vj; i)} ; j + fBi on � (1)

vi; i =0 on � (2)

where t; �; vi; p, and � denote the time, density, velocity in the xi direction, pressure, and
viscosity in that order, and fBi is the body force.
Typically, the following boundary conditions are imposed:

vi = v∗i on Su; (the Dirichlet boundary condition) (3)

ti = t∗i on Sf; (the Neumann boundary condition) (4)

where v∗i and t
∗
i denote the prescribed velocity and traction. Su and Sf are the parts of the

boundary with Dirichlet and Neumann boundary conditions, respectively.
On the free surface, the e�ect of surface tension must be considered. In this study, it

was assumed that the surface tension is constant along the free surface. Thus, the Neumann
boundary condition on the free surface can be represented as follows:

�ti=�
(
1
R1
+
1
R2

)
ni on the free surface (5)

where � is the surface tension coe�cient, R1 and R2 are the principal radii of curvature,
respectively, and ni is the direction cosine of the unit normal to the outer surface.

FINITE ELEMENT FORMULATION

A Galerkin-type weighting function was used here. The weighting functions for the velocity
vector and pressure scalar are denoted as �v and �p, respectively, and the �nal weak form after
the integration by parts can be written as follows:

∫
V
�
@vi
@t
�vi dV +

∫
V
�vjvi; j �vi dV −

∫
V
p �vi; i dV +

∫
V
(�vi; j + �vj; i) �vi; j dV

=
∫
V
fi �vi dV +

∫
Sf

t∗i �vi dS (6)
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∫
V
�pvi; i dV =0 (7)

A mixed �nite element formulation based on four-node tetrahedral P1+/P1 elements has
been implemented in this work. This element having the �fth node in its centroid satis�es
the Babuska–Brezzi conditions [23], which are necessary to ensure a stable solution for the
Navier–Stokes equations using the classical Galerkin method. In addition, it represents several
important advantages: (1) the four-node element provides a minimum dimension of the element
matrix compared with other three-dimensional �nite elements; and (2) tetrahedral elements
have a great ability to represent the complex geometries.
The trial function for velocity is constituted by four linear components and a bubble func-

tion. The pressure is de�ned linearly using the four vertices. In this work, a bubble function
has zero at the element boundary and 1 at the centroid.

v=
4∑
i=1
Nivi + Nbvb =

5∑
�=1
N�v�; Nb =

{
0 at vertices

1 at centroid
(8)

p =
4∑
i=1
Nipi=

4∑
�=1
Ñ�p� (9)

where v and vb are velocity vectors at the vertices and the centroid, respectively. pi is the
pressure at the vertices, Ni the component of the linear trial functions and Nb the bubble
function.
Even though the centroid is used as a part of the velocity �eld approximation when building

the elementary matrices, it can then be eliminated by the ‘static condensation’ procedure at
the element level, leading to the initial four-node tetrahedrons.
The �nite element discretization of the �ow equations leads to a highly non-linear system.

Mv̇+Cv+N(v) = F (10)

M =

⎡
⎢⎣

∫
V
��ijN�N� dV 0

0 0

⎤
⎥⎦ (11)

C =

⎡
⎢⎣

∫
V
�(N�; jN�; i + �ijN�; kN�; k) dV

∫
V
N�; iÑ� dV∫

V
N�; iÑ� dV 0

⎤
⎥⎦ (12)

N(v) =

⎡
⎢⎣

∫
V
��ijN�N�; kvk dV 0

0 0

⎤
⎥⎦ (13)
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F =

⎧⎪⎨
⎪⎩

∫
V
fiN� dV +

∫
Sf

t∗i N� dS

0

⎫⎪⎬
⎪⎭ (14)

v =

{
vj�

p�

}
(15)

The predictor–corrector methods were implemented to solve the nonlinear equations and sum-
marized as follows:

(M+ ��tC)ṽ(i+1)n+1 =Mṽn+1 + ��t�Fn+1 − N (v(i)n+1)� (corrector) (16)

ṽn+1 = vn + (1− �)�tan (predictor) (17)

v(0)n+1 = ṽn+1 (18)

an+1 = (vn+1 − ṽn+1)=(��t) (19)

where �t is the time step; Fn=F(tn); vn and an are the approximations of v(tn) and v̇(tn),
respectively; � is a positive parameter that governs the stability and accuracy of the algorithm;
and superscripts in parentheses are iteration numbers. If I denotes the total number of iterations
to be performed, then the velocity at time tn+1 is de�ned by

vn+1 = v
(I+1)
n+1 (20)

Given vn and an, (16)–(20) serve to uniquely de�ne vn+1 and an+1.

FRINGE ELEMENT RECONSTRUCTION

In an Eulerian description of moving interface �ows, the �ow front generally does not coincide
with element faces. To overcome this drawback, a local and temporary mesh �tting scheme,
made by dividing elements at the �ow front interface into several elements, was developed
by Sato and Richardson [20], Mashayek and Ashgriz [21], and Lock et al. [22]. To extend
these methods to three-dimensional �ow, the fringe element reconstruction method for general
tetrahedral �nite element mesh was developed in this study. This method was composed of
several steps as shown in Figure 1. Details of each step are as follows:

Tracing the free surface

The basic idea of the front tracking method is fairly simple. At �rst, the initial boundary
surface was given with triangular elements. Then, the boundary surface was advected by the
Lagrangian method as

xn+1 = xn +�tvn (21)
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Interior node
Exterior node
Intersection

Free surface

(a) (b) (c) 

Figure 1. Illustration of the front tracking and fringe element reconstruction method: (a) tracing the free
surface; (b) determining the position of the intersection between the free surface and element edges;

and (c) reconstruction of fringe element.

where xn is the position of the boundary surface at time step n and vn is the velocity at
position xn. From this process, the boundary surface at the next time step can be constructed.

Determining intersection points and reconstructing fringe elements

To reconstruct the fringe elements, the precise position of the intersection between the free
surface and element edges must be determined. At each time step, each node has a �ag that
indicates whether it is inside the �uid or not. If all nodes have �ags of unity, this element
is assumed to be �lled with �uid. If all nodes have �ags of zero, the element is empty.
The free surface is located within elements that are composed of nodes that have both unity
and zero �ags. When the free surface penetrates the original mesh system, the intersection
points between the free surface and element edges become new nodes for the fringe elements.
Because the intersection points exist in the edges that have di�erent nodal �ags, 0 and 1, the
position of the free surface can be roughly known. The precise position of the intersection
can then be determined by �nding directly the intersection points between these edges and
the triangle elements that construct the free surface.
Each element in which the free surface exists was reconstructed into several tetrahedral

elements according to its �lling state. Figure 2 shows seven types of fringe elements recon-
structed in an original element. In reconstructing fringe elements, caution must be taken not
to generate two contacting faces that are inconsistent, as shown in Figure 3.
Occasionally, extremely small fringe elements are generated. This situation is encountered

when the free surface intersects an element edge very close to one of its vertex nodes. It
possibly deteriorates the speed of computation because of a Courant–Friedrichs–Lewy (CFL)
stability condition [24]. To overcome this di�culty, a cutting-out criterion has been introduced.
If a certain edge of the fringe element crosses over the �ow front, the distance D between the
intersection point and the nearest vertex node is compared with the length L of the penetrating
edge. Then a new node is generated at the intersection point only if the following condition
is satis�ed:

D¿�L; (0¡�� 1) (22)
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Figure 2. Seven cases of mesh reconstruction in the front elements.

The magnitude of � was chosen to be 0.05 in this study. When this condition was not
satis�ed, the nearest vertex node was moved to the free surface as shown in Figure 4. As a
result, extremely small fringe elements disappeared.

Extrapolation of velocity

At the beginning of each time step of computation, newly �lled nodes do not have velocities
yet. Here, front-tracking arbitrary Lagrangian–Eulerian (FTALE) formulation [7] was used
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(a) (b)

Figure 3. Two contacting faces of: (a) wrong case; and (b) correct case.

Extremely small 
element

Element

Free Surface

Figure 4. Exclusion of extremely small element by moving node.

for obtaining velocities at such nodes. Figure 5 shows the situation of an interface travelling
from left to right. The numerical approximation of the time derivative @v=@t at time t +�t
for a node that encountered an interface at time t + ��t, with 0¡�¡1, was obtained as
follows.
Let xI (t) designate the location of the interface at time t, and let the interface encounter

the node located at point x at time t + ��t. At time t; v−(xI (t); t) and v+(xI (t); t) are the
left and right values of v at the interface, respectively. Here, the notation of left and right
values is related to the orientation of the unit normal vector n to the interface. The time rate
of change @v=@t at the interface can be represented by(

@v
@t

)
(x; t+�t)

=
v(x; t +�t)− v−(x; t + ��t)

(1− �)�t (23)
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x
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Figure 5. One-dimensional representation of the jump of a scalar �eld ’ near the interface travelling
from left to right in the time interval [t; t +�t].

This can be approximated as(
@v
@t

)
(x; t+�t)

≈ v(x; t +�t)− v−(xI (t); t)
�t

−
(
x − xI (t)
�t

) (
@v
@x

)
(x; t+�t)

(24)

The extension to the multi-dimensional case can be easily made as(
@v
@t

)
(x; t+�t)

≈ v(x; t +�t)− v−(xI (t); t)
�t

−
(
x − xI (t)
�t

)
· (grad v)(x; t+�t) (25)

This equation can be transformed as(
@v
@t

)
(x; t+�t)

≈ v(x; t +�t)− {v−(xI (t); t) + (x − xI (t)) · (grad v)(x; t+�t)}
�t

(26)

And the velocities of newly �lled nodes can be approximated as

v(x; t) ≈ v−(xI (t); t) + (x − xI (t)) · (grad v)(x; t+�t)

≈ v−(xI (t); t) + (x − xI (t)) · (grad v)(x; t) (27)

Surface tension modelling

In Equation (5), the surface tension force was modelled with the unit normal vector and
the principal radii of curvature at the free surface as shown in Figure 6(a). However, the
calculation of the principal radii of curvature is not easy. Therefore, instead of �nding the
curvature, which involves higher order derivatives and whose calculation is in general not
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Figure 6. Schematic diagram of the method considering surface tension by means of:
(a) resultant surface force; and (b) surface tension.
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z

t1
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Figure 7. Schematic diagram of the triangular element on the free surface.

accurate, the boundary condition for surface tension was directly satis�ed on the free surface
as shown in Figure 6(b). It was accomplished by attaching triangle elements that had tensile
residual stress �. The force on each surface triangle element was determined as

fk =
∫
Stri

(�)klN�; l ds (28)

Here, k and l are notations denoting the tangent direction t1 and t2 as shown in Figure 7,
and N� is the shape function of the triangle element. The force vector can be transformed to
the global co-ordinate as follows:

⎧⎪⎪⎨
⎪⎪⎩
ft1

ft2

fn

⎫⎪⎪⎬
⎪⎪⎭=T

⎧⎪⎪⎨
⎪⎪⎩
fx

fy

fz

⎫⎪⎪⎬
⎪⎪⎭ (29)
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vy = -x

vx = -y

x

y

O(0,0) a(1,0)

b(1,1)
c(0,1)

b’

Figure 8. Schematic diagram of a given velocity �eld problem.

T=

⎡
⎢⎢⎣
t1

t2

n

⎤
⎥⎥⎦ ; t1·t2 = 0; t1 × t2 = n (30)

The transformed force is then applied to the nodes on the free surface. This method en-
sures that the total force on any closed surface is zero since the forces on each edge of
every triangle element exactly cancel each other. This conservative property is particularly
important for long-time computation where even a small error in the surface tension com-
putation can lead to an unphysical net force on the interface that can be accumulated over
time.

NUMERICAL EXAMPLES

In order to verify the numerical results obtained from the developed programme, some nu-
merical examples are presented in the following.

Analytical case

The example as shown in Figure 8 is a unit square where a velocity �eld was imposed as in
Reference [25]

vx=−y; vy=−x (31)
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Figure 9. Flow front positions and corresponding mesh structure.

Since the velocity (31) is steady, the particle pathlines and the streamlines are coincident,
and governed by

y2 = x2 + c (32)

where c is a constant.
The magnitude of the velocity |v| is equal to (x2 + y2)1=2. As the �uid �lls the square

cavity from the top and right sides, the velocity diminishes and vanishes at the origin o. The
analytical solution of the non-dimensional displacement (d=D) versus the �lling time can be
obtained as follows:

d=D=1− e−t (33)

where d is the particle displacement |bb′| and D is the length of the diagonal |bo|.
Flow fronts and corresponding reconstructed mesh structure are shown in Figure 9. In order

to compare with the analytical solution, the �ow front position at the diagonal was collected at
various times as shown in Figure 10. A very good agreement between the numerical prediction
and analytical solution was obtained during the entire �lling process.

Broken dam problem

A column of water in hydrostatic equilibrium was initially con�ned between two vertical walls
as shown in Figure 11. At initial time (t = 0), the right wall was suddenly removed and the
water column �owed out under gravity along a dry horizontal �oor. The water column was
chosen to be a=5:715 cm wide and b=11:430 cm high in order to compare this numerical
solution with the experimental data obtained by Martin and Moyce [26]. The density and the
dynamic viscosity were 1000 kg=m3 and 0:001 kg=ms, respectively. No surface tension force
was applied since its e�ect was negligible compared with the gravity force. The boundary
conditions used in the calculation are indicated in Figure 11.
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Figure 10. Comparison of the numerical prediction with the analytical solution [25].

x

y

a

b

0,0 == xyv τ 

,0=xv

0=yτ 
gravity g

Figure 11. Schematic diagram for the broken dam problem.

The predicted water front location along the �oor has been compared with Martin and
Moyce’s experimental data. For comparison of numerical solutions with the experimental
results, dimensionless time and water front location along the bottom were de�ned as t∗=
t
√
2g=a and z∗= z=a, respectively. As shown in Figure 12, calculation results show good

agreement with the experimental data.

Filling simulation of a crank shaft part

Filling analysis of a crank shaft part was also performed using the current model. The geometry
and the dimension used in simulations are shown in Figure 13. Only half of the geometry was
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Figure 12. Water front location z∗= z=a versus time t∗= t
√
2g=a along the �oor.

20 mm

30 mm

40 mm

80 mm

75 mm

Inlet

0

10

20

30

40

Z

0
10

-10
-20

-30
-40

20
30

40

X

-40

-20

0

20

40

Y

X

Z

Y

(a) (b)

Figure 13. (a) Geometry of the crank shaft part; and (b) its mesh layout.

meshed using tetrahedral elements. The mesh used for the �lling analysis consists of 3751
nodes and 18 003 elements. The density and viscosity were assumed to be 0:81 kg=mm3 and
3:6 kg=mm s, respectively. No slip condition was applied at all surfaces of the cavity and the
inlet velocity was 600 mm=s.
The �ow front positions and corresponding velocity magnitudes are represented in Figure 14

at di�erent �lling times. It shows that a boundary layer was formed near the surface due to
the no slip condition, resulting in lower velocity at the surface and higher velocity in the
core. However, the velocities in the core became lower at the free surface region because the
�ow began to spread out. This model simulation result con�rmed that the currently developed
programme can adequately analyse three-dimensional moving free surface problems.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:631–648



FRINGE ELEMENT RECONSTRUCTION 645

0

10

20

30

40

Z

-40

-20

0

20

40

X

-25

0

25

50

Y

0

10

20

30

40

Z

-40

-20

0

20

40

X

-25

0

25

50

Y

0

10

20

30

40

Z

-40

-20

0

20

40

X

-25

0

25

50

Y

-25

0

25

50

-40-2002040

t = 0.1625 sec 

-25

0

25

50

-40-2002040

t = 0.3250 sec

-25

0

25

50

-40-2002040

t = 0.4875 sec

Figure 14. Flow front positions and corresponding velocity magnitudes |v| at the six
�lling stages of the crank shaft part.
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Figure 14. Continued
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CONCLUSIONS

A front tracking and fringe element reconstruction method has been developed to simu-
late three-dimensional incompressible �ow with moving free surface. To solve the Navier–
Stokes equations, a mixed formulation based on a four-node tetrahedral element with a
bubble function at the centroid (P1+/P1) was employed. In order to keep material discontinu-
ity across the interface accurate, the element penetrated by the free surface was divided and
reconstructed along the �ow front. This method provides more accurate results, because the
element faces coincide with the �ow front interface, and also leads to improved treatment of
boundary conditions for the free surface in the �nite element formulation. The surface tension
e�ect was considered by imposing the tensile stress on surface elements. This method requires
no calculation of the surface curvature and ensures conservation of the total surface force.
The accuracy of the developed programme was veri�ed by comparing the results to the exact
solution and experimental data in the literature. Also, a �lling problem of a crank shaft was
analysed in order to demonstrate the e�ciency of the proposed method. It was found that
the currently developed method was useful in the three-dimensional analysis of free surface
moving problems.
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